Polarized expression and function of P2Y ATP receptors in rat bile duct epithelia.
نویسندگان
چکیده
Extracellular nucleotides may be important regulators of bile ductular secretion, because cholangiocytes express P2Y ATP receptors and nucleotides are found in bile. However, the expression, distribution, and function of specific P2Y receptor subtypes in cholangiocytes are unknown. Thus our aim was to determine the subtypes, distribution, and role in secretion of P2Y receptors expressed by cholangiocytes. The molecular subtypes of P2Y receptors were determined by RT-PCR. Functional studies measuring cytosolic Ca2+ (Ca) signals and bile ductular pH were performed in isolated, microperfused intrahepatic bile duct units (IBDUs). PCR products corresponding to P2Y1, P2Y2, P2Y4, P2Y6, and P2X4 receptor subtypes were identified. Luminal perfusion of ATP into IBDUs induced increases in Ca that were inhibited by apyrase and suramin. Luminal ATP, ADP, 2-methylthioadenosine 5'-triphosphate, UTP, and UDP each increased Ca. Basolateral addition of adenosine 5'-O-(3-thiotriphosphate) (ATP-gamma-S), but not ATP, to the perifusing bath increased Ca. IBDU perfusion with ATP-gamma-S induced net bile ductular alkalization. Cholangiocytes express multiple P2Y receptor subtypes that are expressed at the apical plasma membrane domain. P2Y receptors are also expressed on the basolateral domain, but their activation is attenuated by nucleotide hydrolysis. Activation of ductular P2Y receptors induces net ductular alkalization, suggesting that nucleotide signaling may be an important regulator of bile secretion by the liver.
منابع مشابه
Cholangiocyte primary cilia are chemosensory organelles that detect biliary nucleotides via P2Y12 purinergic receptors.
Cholangiocytes, the epithelial cells lining intrahepatic bile ducts, contain primary cilia, which are mechano- and osmosensory organelles detecting changes in bile flow and osmolality and transducing them into intracellular signals. Here, we asked whether cholangiocyte cilia are chemosensory organelles by testing the expression of P2Y purinergic receptors and components of the cAMP signaling ca...
متن کاملStimulation of ATP secretion in the liver by therapeutic bile acids.
ATP receptors are ubiquitously expressed and are potential targets for the therapy of a number of disorders. However, delivery of ATP or other nucleotides to specific tissues is problematic, and no pharmacological means to stimulate the release of endogenous ATP has been described. We examined the effects of the bile acid ursodeoxycholic acid (UDCA) on ATP release into bile, since this bile aci...
متن کاملTranscriptional regulation of IL-6 in bile duct epithelia by extracellular ATP.
The inflammatory cytokine IL-6 is essential for cell survival after liver injury. Bile duct epithelia (BDE) markedly upregulate IL-6 release after liver injury, but the mechanisms regulating this have not been defined. Purinergic signals induce multiple potent downstream effects in BDE, so the goals of this study were to determine whether extracellular ATP regulates BDE IL-6 transcription and t...
متن کاملCellular localization of P2Y(2) purinoceptor in rat renal inner medulla and lung.
Physiological and pharmacological studies have demonstrated that extracellular ATP, acting through P2Y(2) purinoceptor, modulates water permeability of renal medullary collecting duct cells and the secretion of ions, mucin, and surfactant phospholipids by respiratory epithelia. Here we provide direct molecular evidence for the expression of P2Y(2) purinoceptor in these cells. RT-PCR confirmed P...
متن کاملFocus on "Multiple functional P2X and P2Y receptors in the luminal and basolateral membranes of pancreatic duct cells".
WHEN RELEASED TO EXTRACELLULAR SPACES, ATP and other nucleotides can participate in multiple types of intercellular communication (4). This can involve classical mechanisms of intercellular signaling (similar to those used in neurotransmission and many types of endocrine regulation) that involve exocytotic release of ATP that is copackaged with biogenic amines (or other neurotransmitters) withi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Gastrointestinal and liver physiology
دوره 281 4 شماره
صفحات -
تاریخ انتشار 2001